Ex-situ Reductive Dechlorination of Carbon Tetrachloride by Iron Sulfide in Batch Reactor

نویسندگان

  • Kyunghoon Choi
  • Woojin Lee
چکیده

Ex-situ reductive dechlorination of carbon tetrachloride (CT) by iron sulfide in a batch reactor was characterized in this study. Reactor scaled-up by 3.5 L was used to investigate the effect of reductant concentration on removal efficiency and process optimization for ex-situ degradation. The experiment was conducted by using both liquid-phase and gas-phase volume at pH 8.5 in anaerobic condition. For 1 mM of initial CT concentration, the removal of the target compound was 98.9% at 6.0 g/L iron sulfide. Process optimization for ex-situ treatment was performed by checking the effect of transition metal and mixing time on synthesizing iron sulfide solution, and by determining of the regeneration time. The effect of Co(II) as transition metal was shown that the reaction rate was slightly improved but the improvement was not that outstanding. The result of determination on the regeneration time indicated that regenerating reductant capacity after 1 treatment of target compound was needed. Due to the high removal rates of CT, ex-situ reductive dechlorination in batch reactor can be used for basic treatment for the chlorinated compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS.

Reductive dechlorination of carbon tetrachloride (CT) and 1,1,1-trichloroethane (1,1,1-TCA) by FeS with transition metals (Cu(II), Co(II), and Ni(II)) and hydrosulfide was characterized in this study. The batch kinetic experiments were conducted by spiking each stock solution of CT and 1,1,1-TCA into 33 g/L of FeS suspensions with and without transition metals at pH 7.5. No significant enhancem...

متن کامل

Degradation of carbon tetrachloride in the presence of zero-valent iron.

Efforts to achieve the decomposition of carbon tetrachloride through anaerobic and aerobic bioremediation and chemical transformation have met with limited success because of the conditions required and the formation of hazardous intermediates. Recently, particles of zero-valent iron (ZVI) have been used with limited success for in situ remediation of carbon tetrachloride. We studied a modified...

متن کامل

Chemical Degradation of Dieldrin using Ferric Sulfide and Iron Powder

The chemical degradation of dieldrin in ferric sulfide and iron powder aqueous suspension was investigated in laboratory batch type experiments. To identify the reaction mechanism, reduced copper was used as reductant. More than 90% of dieldrin was degraded using both reaction systems after 29 days. Initial degradation rate of the pesticide using ferric sulfide was superior to that using iron p...

متن کامل

Effect of Heavy Metals on Dechlorination of Carbon Tetrachloride by Iron Nanoparticles

Effects of heavy metals on the dechlorination of carbon tetrachloride by iron nanoparticles were investigated in terms of reaction kinetics and product distribution using batch systems. Removal of heavy metals and the interaction between heavy metals and iron nanoparticles at the iron surface were also examined. It was found that Cu(II) enhanced the carbon tetrachloride dechlorination by iron n...

متن کامل

A Systematic Approach to in Situ Bioremediation of Carbon Tetrachloride in Groundwater

The historical use of carbon tetrachloride (CT) as a fumigant at grain silos has caused groundwater contamination at numerous sites. The Interstate Technology Regulatory Council (ITRC) – In Situ Bioremediation (ISB) Team has recently completed a guidance document that describes a systematic approach to ISB for CT in groundwater (ITRC, 2002). Contaminant reduction of CT through ISB typi­ cally o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008